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Hallucinating Face by Eigentransformation

Xiaogang Wang and Xiaoou Tang

Abstract—In video surveillance, the faces of interest are often of small
size. Image resolution is an important factor affecting face recognition by
human and computer. In this paper, we propose a new face hallucination
method using eigentransformation. Different from most of the proposed
methods based on probabilistic models, this method views hallucination as
a transformation between different image styles. We use Principal Compo-
nent Analysis (PCA) to fit the input face image as a linear combination of
the low-resolution face images in the training set. The high-resolution image
is rendered by replacing the low-resolution training images with high-reso-
lution ones, while retaining the same combination coefficients. Experiments
show that the hallucinated face images are not only very helpful for recogni-
tion by humans, but also make the automatic recognition procedure easier,
since they emphasize the face difference by adding more high-frequency
details.

Index Terms—Eigentransformation, face hallucination, face recognition,
principal component analysis, super-resolution.

I. INTRODUCTION

In video surveillance, the faces of interest are often of small size be-
cause of the large distance between the camera and the objects. Image
resolution becomes an important factor affecting face recognition per-
formance. Since many detailed facial features are lost in the low-reso-
lution face images, the faces are often indiscernible. For identification,
especially by humans, it is useful to render a high-resolution face image
from the low-resolution one. This technique is called face hallucination
or face super-resolution [1].

The simplest way to increase image resolution is a direct inter-
polation of input images with such algorithms as nearest neighbor
or cubic spline. However, the performance of direct interpolation is
usually poor since no new information is added in the process. A
number of super-resolution techniques have been proposed in recent
years [2]–[13]. Most try to produce a super-resolution image from a
sequence of low-resolution images [2], [3]. Some other approaches
[5], [6], [8]–[10], [12], [14], [15] are based on learning from the
training set containing high- and low-resolution image pairs, with the
assumption that high-resolution images are Markov random fields
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(MRFs) [5], [9], [13]. These methods are more suitable for synthe-
sizing local texture, and are usually applied to generic images without
special consideration of the property of face images.

Baker and Kanade [1], [11], [16] developed a hallucination method
based on the property of face images. Abandoning the MRF assump-
tion, it infers the high-frequency components from a parent structure
by recognizing the local features from the training set. Liuet al. [4]
developed a two-step statistical modeling approach integrating global
and local parameter models. Both of the two methods use complicated
probabilistic models and are based on an explicit resolution reduction
function, which is sometimes difficult to obtain in practice.

Since face images are well structured and have similar appearances,
they span a small subset in the high dimensional image space [17],
[18]. In the study by Penev and Sirovich [19], face images are shown
to be well reconstructed by Principal Component Analysis (PCA)
representation with 300–500 dimensions. Zhaoet al. [20] showed
that the dimensionality of face space is insensitive to image size.
Moghaddam [21] downsampled face images to 12 by 21 pixels and
still achieved 95% recognition accuracy on 1800+ face images from
the FERET database. These studies imply that facial components are
highly correlated and the high-frequency details of face images may
be inferred from the low-frequency components, utilizing the face
structural similarities.

Instead of using a probabilistic model, we propose a face halluci-
nation method using PCA to represent the structural similarity of face
images. The algorithm treats the hallucination problem as the trans-
formation between two different image styles. This method is closely
related to the work in [22], [23], in which a style transformation ap-
proach was applied to transform a photo into a sketch. In a similar way,
we could transform face images from low-resolution to high-resolution
based on mapping between two groups of training samples without de-
riving the transformation function [24]. The hallucinated face image
is rendered from the linear combination of training samples. Using a
small training set, the method can produce satisfactory results.

Hallucination can effectively improve the resolution of a face image,
thus making it much easier for a human being to recognize a face.
However, how much information has been extracted from the low-res-
olution image by the hallucination process and its contribution to au-
tomatic face recognition has not been studied before. In our method,
PCA is applied to the low-resolution face image. In the PCA represen-
tation, different frequency components are uncorrelated. By selecting
the number of eigenfaces, we could extract the maximum amount of
facial information from the low-resolution face image and remove the
noise. We also study the face recognition performance using different
image resolutions. For automatic recognition, a low resolution bound
is found through experimentation. We find that hallucination may help
the automatic recognition process, since it emphasizes the face differ-
ence by adding some high-frequency details.

II. HALLUCINATION BY EIGENTRANSFORMATION

A. Multiresolution Analysis

Viewing a two-dimensional (2-D) image as a vector, the process of
getting a low-resolution face image from the high-resolution one can
be formulated as

*

I l= H

*

I h +
*

n : (1)

Here,
*

I h is the high-resolution face image vector to be rendered, with

length N as the total pixel number.
*

I l is the observed low-resolution
face image vector with length s2N , where s is the downsampling factor
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Fig. 1. Multiresolution analysis in spatial domain, where g is the smoothing function, andB0; . . . ; BK are different frequency bands.

Fig. 2. Eigenface examples sorted by eigenvalues, where ei is the ith eigenface.

(0 < s < 1).H is the transformation matrix involving blurring and the
downsampling process. The blurring operation can be estimated from
the point-spread function of the camera. In practice, it is often simpli-
fied as a Gaussian filter. The term

*

n represents the noise disturbance to
the low-resolution face image captured by the camera. A detailed dis-
cussion on the super-resolution reconstruction constraints can be found
in [11].

The hallucination problem can be discussed under the framework
of multiresolution analysis. As shown in Fig. 1, a process of itera-
tive smoothing and downsampling decomposes the face image into
different bands, B0; . . . ; BK . The low-frequency component is en-
coded in the downsampled low-resolution image, and the difference
between the original face image and the smoothed image contains the
high-frequency detail. In this decomposition, different frequency bands
are not independent. Some components of the high-frequency bands
B1; . . . ; BK can be inferred from the low-frequency band B0. This is
a starting point for hallucination. Many super-resolution algorithms as-
sume the dependency as homogeneous MRFs, i.e., the pixel relies only
on the pixels in its neighborhood. This is an assumption for general
images. It is not optimal for the face class without considering faces
structural similarities. A better way to address the dependency is using
PCA, in which different frequency components are uncorrelated.

Many studies [19], [25] on face space have shown that a face image
can be reconstructed from eigenfaces in the PCA representation. Like
the multiresolution analysis, PCA also decomposes the face image into
different frequency components. The difference is that the PCA method
utilizes the face distribution to decompose face structure into uncorre-
lated frequency components; thus, it can encode face information more
concisely. Our algorithm first employs PCA to extract as much useful
information as possible from a low-resolution face image, and then ren-
ders a high-resolution face image by eigentransformation.

B. Principal Component Analysis

PCA represents face images using a weighted combination of eigen-

faces. We represent a set of face images by an N by M matrix, [
*

l 1

; . . .
*

l M ], where
*

l i is the image vector, N is the number of image
pixels, and M is the number of the training samples (N � M). A
mean face is computed as

*

ml=
1

M

M

i=1

*

l i : (2)

Removing the mean face from each image, we have

L = [
*

l 1 �
*

ml; . . . ;
*

l M �
*

ml] =
*

l
0

1; . . .
*

l
0

M : (3)

A set of eigenvectors, also called eigenfaces, are computed from the
eigenvectors of the ensemble covariance matrix

C =

M

i=1

(
*

l i �
*

ml)(
*

l i �
*

ml)
T = LL

T
: (4)

Directly computing the eigenvectors of C is not practical because of
the large size of the matrix. Alternatively, the eigenvectors of a smaller
matrix R = LTL can be first computed [26]

(LTL)Vl = Vl�l (5)

where Vl is the eigenvector matrix and �l is the eigenvalue matrix.
Multiplying both sides by L, we have

(LLT )LVl = LVl�l: (6)

Therefore, the orthonormal eigenvector matrix of C = LLT can be
computed from

El = LVl�
�

l
: (7)

For a face image
*

x l, a weight vector can be computed by projecting it
onto the eigenfaces:

*

wl= E
T

l (
*

x l �
*

ml): (8)

This is a face representation based on eigenfaces. A face can be recon-
structed from K eigenfaces, El = [e1; . . . ; eK ]

*

r l= El
*

wl +
*

ml : (9)

Similar to other multiscale analysis methods, PCA also decomposes
face images into different frequency components. Fig. 2 shows some
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Fig. 3. Face reconstruction using a different number of eigenfaces. K is the eigenface number.

Fig. 4. System diagram using eigentransformation for hallucination.

eigenfaces that are sorted by eigenvalues. Eigenfaces with large eigen-
values are “face-like,” and characterize the low-frequency components.
Eigenfaces with small eigenvalues are “noise-like,” and characterize
the high-frequency details. PCA is optimal for the face representation
because theK largest eigenfaces account for most of the energy and are
most informative for the face image set. The eigenface numberK con-
trols the detail level of the reconstructed face. An example is shown in
Fig. 3. AsK increases, more details are added to the reconstructed face.
Different from other multiscale analysis, in PCA, the frequency com-
ponents are computed by decorrelation based on face structure. This
uncorrelation property is important for the success of the eigentrans-
formation algorithm.

C. Eigentransformation

For eigentransformation, we use a training set containing low-res-
olution face images, and the corresponding high-resolution face im-

ages. Following the previous discussion, let [
*

l 1; . . .
*

l M ] represent
the low-resolution training face image set, from which eigenfaces are
computed. Apply PCA to the input low-resolution face image

*
x l. From

(7) and (9), the reconstructed face image can be represented by

*
r l= LVl�

�

l

*
wl +

*
ml= L

*
c +

*
ml (10)

where
*
c = Vl�

�1=2
l

*
wl= [c1; c2; . . . ; cM ]T . Equation (10) can be

rewritten as

*
r l= L

*
c +

*
ml=

M

i=1

ci
*

l
0

i +
*
ml : (11)

This shows that the input low-resolution face image can be recon-
structed from the optimal linear combination of the M low-resolution
training face images. Here,

*
c describes the weight that each training

face contributes in reconstructing the input face. The sample face
that is more similar to the input face has a greater weight contribu-

tion. Replacing each low-resolution image
*

l
0

i by its corresponding

Fig. 5. Extract facial information in the PCA space of low-resolution face
images.

high-resolution sample
*

h
0

i, and replacing
*
ml with the high-resolution

mean face
*
mh, we have

*
xh=

M

i=1

ci
*

h
0

i +
*
mh : (12)

*
xh is expected to be an approximation to the real high-resolution face
image.
*
xh should meet two necessary conditions in order to adequately

approximate the original high-resolution face image. First, after res-
olution reduction of

*
xh, the output should produce the low-resolution

input face image. Second,
*
xh should be face-like at the high-resolu-

tion level. The first condition can be proved easily. From (1), without
considering the noise disturbance, the transformation between the high-
resolution face image and the low-resolution face image can be approx-
imated as a linear operation [11]. For the training set, we have

*

l
0

i=H
*

h
0

i (13)
*
ml=H

*
mh : (14)

From (11) and (12), replacing
*

l
0

and
*
ml with (13) and (14), we have

*
r l=

M

i=1

ciH
*

h
0

i +H
*
mh= H

M

i=1

ci
*

h
0

i +
*
mh = H

*

h : (15)
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Fig. 6. Hallucinated face images by eigentransformation. (a) Input 23� 25; (b) Cubic B-spline; (c) hallucinated; (d) original 117� 125.

Since
*

r l is an optimal reconstruction to the input low-resolution face
image ~xl;

*

xh leads to a good approximation to ~xl after resolution re-
duction. For the second condition, (12) shows that

*

xh is the linear com-
bination of high-resolution face images, so it should be approximately
face-like at a high-resolution level. Of course, some non-face-like dis-
tortion may be involved, since the combination coefficient ci is not
computed from the high-resolution training data. We can reduce these
non-face-like distortions by reconstructing

*

xh from the high-resolu-
tion eigenfaces. Let Eh and �h = diag(�1; . . . ; �K) be the eigenface
and eigenvalue matrixes computed from the high-resolution training
images. The principal components of

*

xh projecting on the high-reso-
lution eigenfaces are

*

wh= E
T

h (
*

xh � *

mh): (16)

The eigenvalue �i is the variance of high-resolution face images on the
ith eigenface. If the principal componentwh(i) is much larger than �i,
non-face-like distortion may be involved for the ith eigenface dimen-

sion. To reduce the distortion, we apply constraints on the principal
components according to the eigenvalues:

*

w
0

h (i) =
wh(i); jwh(i)j � a

p
�i

sign (wh(i)) � a
p
�i; jwh(i)j > a

p
�i

; a > 0:

(17)

We use a
p
�i to bound the principal components. Here, a is a positive

scale parameter. The final hallucinated face image is reconstructed by

*

x
0

h= Eh
*

w
0

h +
*

mh : (18)

The diagram of the hallucination algorithm based on eigentrans-
formation is shown in Fig. 4. When a low-resolution image

*

x l is
input, it is approximated by a linear combination of the low-resolu-
tion images using the PCA method, and we get a set of coefficients
[c1; c2; . . . ; cM ]T on the training set. Keeping the coefficients and
replacing the low-resolution training images with the corresponding
high-resolution ones, a new high-resolution face image can be synthe-
sized. The synthesized face image is projected onto the high-resolution
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Fig. 7. Hallucinated face images using different resolutions as the input. (a) Original 50 (117� 125). (b) First row is the input face images, whose eye center
distances have been downsampled to 20, 15, 10, 7, and 5 pixels, respectively; the second row is the interpolation result using Cubic B-spline; the third row is the
hallucinated face images.

eigenfaces and reconstructed with constraints on the principal com-
ponents. This transformation procedure is called eigentransformation,
since it uses the eigenfaces to transform the input image to the output
result.

D. Discussion

In the eigentransformation algorithm, the hallucinated face image is
synthesized by the linear combination of high-resolution training im-
ages and the combination coefficients come from the low-resolution
face images using the PCA method. The algorithm improves the image
resolution by inferring some high-frequency face details from the low-
frequency facial information by taking advantage of the correlation be-
tween the two parts. Because of the structural similarity among face
images, in multiresolution analysis, there exists strong correlation be-
tween the high-frequency band and low-frequency band. For high-reso-
lution face images, PCA can compact this correlated information onto
a small number of principal components. Then, in the eigentransfor-
mation process, these principal components can be inferred from the
principal components of the low-resolution face by mapping between
the high- and low-resolution training pairs. Therefore, some informa-
tion in the high-frequency bands are partially recovered.

Fig. 8. RMS error per pixel in intensity using Cubic-spline interpolation
and hallucination by eigentransformation. The intensity is between 0 and 1.
The resolution is marked by eye center distance.
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Fig. 9. Adding constraints to the principal components of hallucinated face images: (a) Original high-resolution face images; (b) low-resolution face images
with de = 10, and size 23� 25; (c) low-resolution face images with zero mean 0.03 standard deviation Gaussian noise; (d) hallucinated face images from (c)
without constraints on the principal components; (e) hallucinated face images from (c) with constraints on principal components. (e) is more face-like and less
noisy compared to (d), and retains most of the facial characteristics of (d).

Fig. 10. Hallucinating face with additive zero mean Gaussian noise. The input face image is 23� 25: (a) Original high-resolution face image; (b) low-resolution
face images with noise; (c) hallucinated face images using different eigenface numbers.K is the eigenface number in eigentransformation, and � is the standard
deviation of Gaussian noise.
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Fig. 11. Face hallucination using different training set sizes: (a) Original high-resolution face images; (b) hallucinated face images based on different training set
sizes (187, 100, 50, and 30).

In practice, the low-resolution image is often disturbed by noise that
has a flat distribution on all the eigenvectors. For low-resolution face
images, the energy on small eigenvectors is small; thus sometimes it
is overwhelmed by noise. If the face data distribution is modeled as a
Gaussian distribution, the components on different eigenvectors are in-
dependent in the PCA representation. The information on these noisy
components (eigenfaces after K as shown in Fig. 5) is lost, and cannot
be recovered since the components on different eigenvectors are inde-
pendent in the PCA representation. By selecting an optimal eigenface
numberK , we can extract the facial information and remove the noise.
Since

*

r l is reconstructed from the K eigenfaces, given an optimal
value of K;

*

r l encodes the maximum amount of facial information
recoverable in the low-resolution face image.

By adjusting K , the eigentransformation method can control noise
distortion. It makes full use of the facial information encoded in

*

r l to
render the high-resolution face image. We have shown that the hallu-
cinated face image is face-like and could produce

*

r l after resolution
reduction. Although these conditions do not guarantee that the hallu-
cinated face image is exactly the same as the original high-resolution
face image, it does provide a face-like possible solution to

*

r l. This
solution helps to infer high-frequency components from the low-fre-
quency facial features, thus significantly improving the appearance of
the face image.

Our hallucination algorithm is based on training. So the composition
of the training set plays an important role. A human face may undergo
many kinds of variations caused by pose, lighting, glasses, etc. These
factors may greatly change the face’s appearance, and cause a compli-
cated data distribution. It is a challenge for a robust face hallucination
system to render face images under all these variations. One way to
handle the complicated intrapersonal and extrapersonal variations is to
enlarge the training set to contain as many kinds of variations as pos-
sible. However, this may not be the most effective solution. We find that
a better approach is to construct a number of smaller training subsets.
Each subset contains images of small variations. Better results can be
obtained using the subset that is closest to the input image than using
all the subsets combined.

We have noticed that some studies [21] use face images of small size
for automatic face recognition, and have achieved satisfactory results.
Through experiments, we would like to explore how the face resolu-
tion affects the recognition performance, and whether there is enough
information for the low-resolution face images to distinguish different
faces. Given the significant improvement of the face appearance by the

hallucination process, it is interesting to investigate whether the halluci-
nation process helps automatic recognition. Since more high-frequency
details are recovered, we expect the hallucination process to help the
recognition performance.

III. EXPERIMENT

A. Hallucination Experiment

The hallucination experiment is conducted on a data set containing
188 individuals with one face image for each individual. Using the
“leave-one-out” methodology, at each time, one image is selected for
testing and the remaining are used for training. In preprocessing, the
face images are aligned by the two eyes. The distance between the eye
centers is fixed at 50 pixels, and the image size is fixed at 117� 125.
Images are blurred by averaging neighbor pixels and downsampled to
low-resolution images. Here, we use the eye center distance de to mea-
sure the face resolution.

Some hallucination results are shown in Fig. 6. The input face im-
ages are downsampled to 23� 25, with de equal to 10. Compared with
the input image and the Cubic B-Spline interpolation result, the hallu-
cinated face images have much clearer detail features. They are good
approximations to the original high-resolution images.

1) Hallucination for Different Resolutions: We study the halluci-
nation performance using different resolutions as input. The eye center
distance is downsampled to 20, 15, 10, 7, and 5. An example is shown in
Fig. 7, where (a) is the original high-resolution face image. In Fig. 7(b),
the first row is the input face images with different resolutions; the
second row is the result of Cubic B-Spline interpolation; and the third
row is the hallucination result. Fig. 8 reports the average root mean
square (rms) error per pixel in intensity for the 188 face images under
different resolutions. For a very low resolution, the low-resolution and
direct-interpolated face images are practically indiscernible, and the
rms error of Cubic B-spline interpolation increases quickly. The per-
formance of hallucination by eigentransformation is much better. When
de is downsampled to 10, the result of eigentransformation is still satis-
factory. For further lower resolutions, there are some distortions on the
eyes and mouth, but the hallucinated images are still clear and face-like.

2) Robustness to Noise: In Fig. 9, we add zero mean Gaussian noise
to the low-resolution face images. If no constraints are added to the
principal components, the hallucinated face images in Fig. 9(d) are with
noise distortion and somewhat not face-like. Adding constraints on the
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Fig. 12. Face hallucination without glasses: (a) Original high-resolution face images; (b) input low-resolution face images; (c) hallucinated face images based on
the training set containing samples both with and without glasses; (d) hallucinated face images based on the training set without glasses.

Fig. 13. Face hallucination with glasses: (a) Original high-resolution face images; (b) input low-resolution face images; (c) hallucinated face images based on
the training set with glasses; (d) hallucinated face images based on the training set without glasses.

principal components using (17), the reconstructed face images remove
most of the noise distortion and retain most of the facial characteristics
as shown in Fig. 9(e). Here, we set the parameter a as 2.

As discussed in Section II, some high-frequency detail is lost in the
process of blurring and downsampling, or overwhelmed by noise. Se-
lecting the eigenface number in eigentransformation, we could con-
trol the detail level by keeping maximum facial information while re-
moving most of the noise disturbance. In Fig. 10, we add zero mean
Gaussian noises with four different standard deviations (�) to the low-
resolution face image with de equal to 10 (size of 23� 25). The image
intensity is between 0 and 1. Two different eigenface number K , 50
and 180, are used in the eigentransformation. When only 50 eigen-
faces are used in the eigentransformation, the hallucinated face images
lose some individual characteristics. Although the edges and contours
are clear, the hallucinated faces are more like a mean face. When the
eigenface number is equal to 180, more individual characteristics are

added to the hallucinated face images. For relatively small noise (� =
0:03; 0:05), these characteristics are similar to the original high-reso-
lution face image. But for large noise (� = 0:1; 0:2), even though the
hallucinated faces are still face-like, the added characteristics start to
deviate from those of the original face. So when the noise is small, a
larger eigenface number is more suitable, since it can characterize the
face better with more individually detailed characteristics. When noise
is large, a small eigenvector number is better. Although the halluci-
nated faces contain less individual facial characteristics, they are more
face-like. In practice, we could estimate the noise effect and choose the
proper detail level for hallucination.

B. Impact of Training Set

1) Training Set Size: Fig. 11 shows two examples of hallucinated
face images based on a different number of training samples. There
is not much difference between the results using 187 and 100 training
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Fig. 14. Face hallucination with race variation: (a) Original high resolution occidental face images; (b) input low-resolution face images; (c) hallucinated face
images based on occidental training set; (d) hallucinated face images based on oriental training set; (e) hallucinated face images based on enlarged training set
containing both occidental and oriental people.

samples. This shows that our hallucination algorithm can achieve sat-
isfactory results even based on a relatively small training set. How-
ever, when the training set is too small, many individual characteristics
cannot be rendered. As shown in Fig. 11, the hallucinated face images
of the two persons become very similar to each other when less than
50 images are used for training.

2) Training Set Composition: In this section, we design a set of ex-
periments to study the impact of different training set compositions on
face hallucination. We focus on two special cases: race variation and
wearing glasses. The conclusion from the experiments can be easily ex-
tended to other kinds of variations such as pose and lighting. Some of
the face images for experiments are selected from the XM2VTS data-
base [27]. In Fig. 12, the face images to be rendered are not wearing
glasses. When they are hallucinated from an enlarged training set con-
taining samples both with and without glasses, the results have some
noise around the eyes. If we adopt a smaller training set containing only
samples without glasses, the hallucinated face images have less noise.
This shows that if we can determine what type of variation the face
image is undergoing, it is better to design a smaller training set with
the same kind of variation. However, sometimes when the resolution
of the input image is too low, we cannot discriminate whether the face
is wearing glasses or not. In this case, we can hallucinate the face im-
ages using several different training subsets and choose the best result.
Of course, we can also use all the results from different training sets to-
gether to identify the person. In Fig. 13, the input face images wearing
glasses are properly rendered from the training set with glasses. The
glasses can also be “taken off” by using the training set without glasses.
Both of the two kinds hallucinated results are helpful to identify the
person.

In Fig. 14, the input are occidental faces. We generate the halluci-
nated face images based on three training sets: occidental training set,
oriental training set, and enlarged training set containing both occi-
dental and oriental people. It is clear that the occidental training set
gives the best result. This further confirms that it is important to design
a training set that shares similar face characteristics with the face to be
hallucinated. The face images hallucinated from the oriental training
set are somewhat blurred and noisy. This may also provide some hint
on judging the race of the faces. The face has a greater possibility to be
the same race with the training set which can better hallucinate it.

Fig. 15. Recognition accuracy using low-resolution face images and
hallucinated face images based on XM2VTS database. The resolution is
marked by eye center distance with 50, 20, 15, 10, 7, and 5.

C. Recognition Experiment

We study the recognition performance using low-resolution face im-
ages and hallucinated face images. Two hundred and ninety five in-
dividuals from the XM2VTS face database [27] are selected, with two
face images in different sessions for each individual. One image is used
as a reference, and the other is used for testing. We use direct correlation
for recognition, which is perhaps the simplest face recognition algo-
rithm. The reason for using this simple classification algorithm is that
our focus is on the comparison of recognition ability of the low-reso-
lution and hallucinated face images rather than a sophisticated classifi-
cation algorithm. The recognition accuracies over different resolutions
are plotted in Fig. 15. When de is reduced from 50 to 10, there is only
slight fluctuation on recognition accuracy using low-resolution face im-
ages. When de is further reduced to 7 and 5, the recognition accuracy
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for low-resolution face images drops greatly. Resolution with de equal
to 10 is perhaps a low-bound for recognition. Below this level there
may not be enough information for recognition. This is also consistent
with the hallucination experiment in Fig. 7. Satisfactory hallucination
results can be obtained when de is equal to or larger than 10.

We also try to explore whether hallucination can contribute to auto-
matic face recognition. We expect hallucination to make the recogni-
tion procedure easier, since it emphasizes the face difference by adding
some high-frequency details. In this experiment, the low-resolution
testing image is hallucinated by reference face images, but the face
image of the testing individual is excluded from the training set. As
shown in Fig. 15, the hallucination improves the recognition accuracy
when the input face images have very low resolutions. The improve-
ment seems not as significant as the improvement in the face appear-
ance. Further investigation in psychology may be needed to address
this phenomenon. It seems that the human visual system can better in-
terpret the added high-frequency details.

IV. CONCLUSION

Because of the structural similarity, face images can be synthesized
from the linear combination of other samples. Based on this property
of face images, hallucination can be implemented by eigentransforma-
tion. By selecting the frequency level in the PCA representation, our
method extracts maximum facial information from the low-resolution
face images and is robust to noise. The resolution and quality of face
images are greatly improved over the low-resolution images. The hal-
lucination process not only helps a human being to identify faces but
also makes the automatic face recognition procedure easier. It will be
interesting to study why the hallucinated image is significantly better
perceived by a human being than by the automatic recognition system.
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